f(z)=z+iz−i
f(f(z))=z+iz−i+1z+iz−i−i
=z+i+zi+1z+i−zi−1
=(z+1)(i+1)(z−1)(1−i)×(1+i)(1+i)
=(z+1)(i+1)2(z−1)×2
⇒f2(z)=(z+1z−1)i [Let f2(z)=f(f(z))]
f3(z)=f(f(f(z))) =z+1z−1i+iz+1z−1i−i
=(z+1)+(z−1)(z+1)−(z−1)
=z
Similarly, f4(z)=z+iz−i=f(z)
⇒fn+3(z)=fn(z) ...(1)
Now, zn=f(zn−1)
⇒zn=f(f(zn−2))=f2(zn−2)
⇒zn=f(f(f(zn−3)))=f3(zn−3)
⋮
⇒zn=fn−1(z) ...(2)
From (1) and (2), we get
⇒zn+3=zn
Now, z2020=z3×673+1
⇒1+2020 i=z1
⇒1+2020 i=z0+iz0−i
⇒1+2020 i=K+i+iK+i−i
⇒1+2020 i=1+2Ki
Comparing real and imaginarry part we get
⇒2K=2020
⇒1K=1010