Let f:R+→R+be a function satisfying the relation \(f(x.f(y))=f(xy)+x~for~all~x,y \epsilon R^{+}\). Then limx→0((f(x))13−1(f(x))12−1)=
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C Given relation is f(x.f(y))=f(xy)+x (1.56) Interchanging x and y in Eq. (1.56), we have f(y.f(x))=f(yx)+y (1.57) Again replacing x withf(x) in Eq. (1.56) we get f(f(x).f(y))=f(y.f(x))+f(x) (1.58) Therefore, Eqs. (1.56) - (1.58) imply f(f(x).f(y))=f(xy)+y+f(x) (1.59) Again interchanging x and yin Eq. (1.59), we have f(f(y).f(x))=f(yx)+x+f(y) (1.60) Equations (1.59) and (1.60) imply f(xy)+y+f(x)=f(yx)+x+f(y) (1.61) Suppose f(x)−x=f(y)−y=λ Substitutingf(x)=λ+xin Eq. (1.56), we have x.f(y)+λ=(xy+λ)+x ⇒x.f(y)=xy+x Therefore x(y+λ)=xy+x[∵f(y)=λ+y] ⇒λ=x ⇒λ=1(∵x>0) So f(x)=x+λ=x+1 Hence limx→0(f(x))13−1(f(x))12−1=limx→0(1+x)1/3−1(1+x)1/2−1=limx→0((1+x)1/3−11+x−1).(1+x−1(1+x)1/2−1)=1/31/2=23