Let f : R → R be a function such that f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3),x∈R. Then f(2) equal?
A
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
30
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−2 f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3) ⇒f′(x)=3x2+2xf′(1)+f′′(2) .(1) ⇒f′′(x)=6x+2f′(1) ..(2) ⇒f′′′(x)=6 .(3) Put x=1 in equation (1): f′(1)=3+2f′(1)+f′′(2) ..(4) Put x=2 in equation (2): f′′(2)=12+2f′(1) .(5) from equation (4) & (5): −3−f′(1)=12+2f′(1) ⇒3f′(1)=−15 ⇒f′(1)=−5 ⇒f′′(2)=2 ..(2) put x=3 in equation (3): f′′′(3)=6 ∴f(x)=x3−5x2+2x+6 f(2)=8−20+4+6=−2.