Let f: R → R such that f(x + 2y) = f(x) + f(2y) + 4xy, ∀ x, y ϵ R and f(0) = 0.
If I1=∫10f(dx),I2=∫0−1f(x)dx,and I3=∫1−1f(x)dx,then
I2 = I2
I3 = 0
I1 < I3
I2 > I3
f(x)=x2 ⇒ I1 =13 =I2 and I3 =23
Let f : R→R such that f(x+2y)=f(x)+f(2y)+4xy,∀x,yϵR and f(0) = 0.If l1=∫10f(x)dx,I2=∫0−1f(x)dx, and l3=∫1−1f(x)dx, then
Let I1=(π4)2+√2,I2=(tan−1(1e))2+2e√e2+1,I3=(tan−1e)2+2√e2+1, then which of the following is true?