Let f : R→R such that f(x+2y)=f(x)+f(2y)+4xy,∀x,yϵR and f(0) = 0.If l1=∫10f(x)dx,I2=∫0−1f(x)dx, and l3=∫1−1f(x)dx, then
I1=I2
I3=0
I1<I3
I2<I3
f(x)=x2⇒I1=13I2 and I3=23
Let f: R → R such that f(x + 2y) = f(x) + f(2y) + 4xy, ∀ x, y ϵ R and f(0) = 0.
If I1=∫10f(dx),I2=∫0−1f(x)dx,and I3=∫1−1f(x)dx,then