f(x)=2tan−1x
⇒f(g(x))=2tan−1(x+2)
(f(g(x)))2−5f(g(x))+4>0
⇒(f(g(x))−1)(f(g(x))−4)>0
⇒f(g(x))<1 or f(g(x))>4
⇒tan−1(x+2)<12
or tan−1(x+2)>2 (not possible)
⇒tan−1(x+2)<12
⇒x+2<tan(12)
⇒x∈(−∞,tan(12)−2)
As x∈(−10,10),
x∈(−10,tan(12)−2)
As 12<π6
⇒tan12<1√3
⇒tan12−2<1√3−2≈−1.4
Hence, integers in the range are −9,−8,−7,−6,−5,−4,−3,−2
i.e., 8 integers