Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f'(0)=-2andf′′(0)=6, then ∫2−1f(x)dx is equal to
Open in App
Solution
Let f(x)=ax2+bx+c ⇒f′(x)=2ax+b and f′′(x)=2a. We are given f(0)=c=1,f′(0)=b=−2 and f′′(0)=2a=6⇒a=3,b=−2 and c=1. ∴f(x)=3x2−2x+1. ∴∫2−1f(x)dx=∫2−1(3x2−2x+1)dx=[x3−x2+x]2−1 =(8−4+2)−(−1−1−1)=6+3=9.