The correct option is D [1√2,1]
For the function f(x)=√x−√1−x2 to be a real valued function,
x−√1−x2≥0, 1−x2≥0x∈[−1,1] ...(1)⇒x≥√1−x2, x∈[−1,1]⇒x≥0 (∵x≥√1−x2≥0) ...(2)⇒x2≥1−x2, x∈[−1,1]⇒x2≥12, x∈[−1,1]⇒x∈(−∞,−1√2]∪[1√2,∞) ...(3)
From (1),(2) and (3)
x∈[1√2,1]