Let f(x) = {1+x3,x<0x2−1,x≥0 ; g(x) = {(x−1)1/3,x<0(x+1)1/2,x≥0. Discuss the continuity of g(f(x))
f(x)={1+x3x<0x2−1x≥0
g(x)={(x−1)13x<0(x+1)1/2x≥0
g(f(x))={(f(x)−1)13f(x)<0(f(x)+1)1/2f(x)≥0
f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩1+x3x<−11+x3−1≤x≤0x2−10<x<1x2−1x≥1
g(f(x))=⎧⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪⎩(1+x3−1)13x<−1(1+x3+1)1/2−1≤x≤0(x2−1−1)130<x<1(x2−1+1)1/2x≥1
⇒limx→−1−g(f(x))=limx→−1−x=−1
⇒limx→−1+g(f(x))=limx→−1−(1+x3+1)1/2=1
⇒limx→0−g(f(x))=limx→0−(1+x3+1)1/2=√2
⇒limx→0+g(f(x))=limx→0+(x2−1−1)13=(−2)1/3
limx→1−g(f(x))=limx→1−(x2−1−1)13=−1
⇒limx→1+g(f(x))=limx→1+x=1
g(f(x)) is discontinuous
at x=−1,0,1