f(x)=∣∣
∣
∣∣1cos2xcos2xcos2xcos2xcot2xsecxcosxsec2x+cosx.cosec2 x∣∣
∣
∣∣
R3→R3−secx R1
=∣∣
∣
∣
∣∣1cos2xcos2xcos2xcos2xcot2x001cos2x+cosxsin2x−cosx∣∣
∣
∣
∣∣
=[1cos2x+cosxsin2x(1−sin2x)](cos2x−cos4x)
=[1cos2x+cos3xsin2x](cos2x−cos4x)
=sin2x+cos5x
π/2∫0f(x)dx=π/2∫0sin2x+cos5x dx
=π4+815
⇒m=14, n=815⇒4m+15n=9