Let f(x)=cos−1[1√13(2cosx−3sinx)]. Then f′(0.5)=____
A
0.5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1 Consider the following 2√13cosx−3√13sinx =cosθcosx−sinθ.sinx ....where θ=cos−1(2√13)=sin−1(3√13) =cos(θ+x) Hence cos−1[2√13cosx−3√13sinx] =cos−1[cos(θ+x)] =θ+x =cos−1(2√13)+x Hence f(x)=cos−1(2√13)+x f′(x)=1 Hence f′(x) is a constant function. Therefore f′(0.5)=1.