Given that, f′(x)=192x32+sin4πx for all x∈R
And x∈(12,1) with xf(12)=0
Then, f′(x)=192x32+sin4π2
f′(x)=192x32+1=192x33=64x3 for x∈12
Now, f′(x)=192x32+sin4π
f′(x)=192x32+0=192x32=96x3 for x∈1
Since,
∫x1264x3dx≤∫x12f′(x)dx≤∫x1296x3dx
⇒[64x44]12x≤[f′(x)]12x≤[96x44]12x
⇒[16x4−1]≤[f′(x)]12x≤[24x4−32]
⇒16x4−1≤f(x)−f(12)≤24x4−32
If given that, f(12)=0 then,
16x4−1≤f(x)≤24x4−32, x∈(12,0)
On integrate and we get,
∫112[16x4−1]dx≤∫112f(x)dx≤∫112[24x4−32]dx
⇒[16x55−x]121≤∫112f(x)dx≤∫112[245x5−3x2]121dx
⇒[165(1−132)]−[1−12]≤∫112f(x)dx≤[245(1−132)]−32[1−12]
⇒2610≤∫112f(x)dx≤7820
⇒2610≤∫112f(x)dx≤3910
Comparing that given equation,
m≤∫112f(x)dx≤M
Then, m=2.6 and M=3.9
Option (D) is correct.
Because, m=2.6≤1 and M=3.9≤12
Hence, this is the answer.