Let f(x)=∫exxdx and ∫(ex−1)(2x)x2−5x+4dx=αf(x−4)+βf(x−1)+γ, then
A
ln3α=3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4+3β=ln3α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3β+2=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ln3α=3+ln8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Cln3α=3+ln8 D3β+2=0 ∫ex−1.(2x)x2−5x+4dx =∫ex−1[(x−1)+(x−4)+5](x−1)(x−4)dx=∫ex−1x−4dx+∫ex−1x−1dx+5∫ex−1(x−1)(x−4)dx=e3∫ex−4x−4dx+∫ex−1x−1dx+53∫ex−1[(x−1)−(x−4)](x−1)(x−4)dx=e3∫ex−4x−4dx+∫ex−1x−1dx+53e3∫ex−4x−4dx−53∫ex−1x−1dx=83e3∫ex−4x−4dx−23∫ex−1x−1dx=83e3f(x−4)+(−23)f(x−1)+γ…(∵f(x)=∫exxdx) Comparing it with the given equation ∫(ex−1)(2x)x2−5x+4dx=αf(x−4)+βf(x−1)+γ, we get 3α=8e3⇒ln3α=ln8+3 3β=−2⇒3β+2=0