Let F(x)=f(x)g(x)h(x) for all real x, where f(x),g(x),h(x) are differentiable functions. At some point x0, if F′(x0)=21F(x0),f′(x0)=4f(x0),g′(x0)=−7g(x0) and h′(x0)=λh(x0), then λ =
A
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
24
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C24 We have, F(x)=f(x)g(x)h(x) taking log ⇒logF(x)=logf(x)+logg(x)+logh(x) Differentiating both sides w.r.t x, we get F′(x)F(x)=f′(x)f(x)+g′(x)g(x)+h′(x)h(x) ⇒F′(x0)F(x0)=f′(x0)f(x0)+g′(x0)g(x0)+h′(x0)h(x0) ⇒21=4−7+λ ⇒λ=24