1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Linear Differential Equations of First Order
Let fx=λ +μ...
Question
Let
f
(
x
)
=
λ
+
μ
|
x
|
+
ν
|
x
|
2
, where
λ
,
μ
,
ν
are real constant. Then
f
′
(
0
)
exists if
A
μ
=
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ν
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
λ
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
μ
=
ν
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
A
μ
=
0
f
(
x
)
=
λ
+
μ
|
x
|
+
ν
|
x
|
2
f
(
x
)
=
{
λ
−
μ
x
+
ν
x
2
x
<
0
λ
+
μ
x
+
ν
x
2
x
≥
0
f
′
(
x
)
=
{
−
μ
+
2
ν
x
x
<
0
μ
+
2
ν
x
x
≥
0
Hence
f
′
(
0
)
exists when
−
μ
+
2
ν
.0
=
μ
+
2
ν
.0
⇒
μ
=
0
Suggest Corrections
0
Similar questions
Q.
∣
∣ ∣
∣
x
+
1
x
+
2
x
+
λ
x
+
2
x
+
3
x
+
μ
x
+
3
x
+
4
x
+
ν
∣
∣ ∣
∣
=
0
, where
λ
,
μ
,
ν
are in A.P. is
Q.
Solve the following equations :
x
a
+
λ
+
y
b
+
λ
+
z
c
+
λ
=
1
,
x
a
+
μ
+
y
b
+
μ
+
z
c
+
μ
=
1
,
x
a
+
ν
+
y
b
+
ν
+
z
c
+
ν
=
1.
Q.
If the ratio of roots of
λ
x
2
+
μ
x
+
ν
=
0
is equal to the ratio of the roots of
x
2
+
x
+
1
=
0
, then
λ
,
μ
,
ν
are in
Q.
Assertion :If
λ
and
μ
are positive real numbers and [*] denotes greatest integer function then
l
i
m
x
→
0
+
x
λ
[
μ
x
]
=
μ
λ
Reason:
l
i
m
y
→
∞
{
y
}
y
=
0
, where
{
}
denotes fractional part function.
Q.
If
d
=
λ
(
a
×
b
)
+
μ
(
b
×
c
)
+
ν
(
c
×
a
)
is equal to and
[
a
b
c
]
=
1
8
, then
λ
+
μ
+
ν
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Explore more
Linear Differential Equations of First Order
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app