The correct option is
B Only when
p>qf(x)=⎧⎪⎨⎪⎩xp(sinx)q,if 0<x≤π20,if x=0,(p,q,ϵR)
Lagrange's Mean value theorem is applicable for any f, if it is continuous at (a,b) and differential with in the closed interval [a,b].
i.e. if limx→af(x)=f(a)
Here, f(a)=f(0)=0
f(x) is differentiable at (0,x)
Consider, limx→0f(x)
=limx→0xp(sinx)q
=limx→0xp⋅xq⋅x−q(sinx)q
=limx→0xq⋅xp−q(sinx)q
=limx→0xq(sinx)q×limx→0xp−q
=limx→0(xsinx)q×limx→0xp−q
=limx→0xp−q ....... [∵limx→0xsinx=1]
Now, limx→0xp−q=⎧⎨⎩0,if p>q∞,if p<q1,if p=q
∴limx→0f(x)=0 only when p>q
Hence, Lagrange's Mean value theorem is applicable to f(x) in [0,x] only when p>q.