The correct option is A (2,6)
f(x)=log(log1/3(log7(sinx+a)))
For the log function to be defined,
(i)log1/3(log7(sinx+a))>0⇒log7(sinx+a)<1⇒sinx+a<7⋯(1)
(ii)log7(sinx+a)>0⇒sinx+a>1⋯(2)
(iii)sinx+a>0⋯(3)
From equation (1),(2) and (3),
1<sinx+a<7
So,
sinx+a>1 and sinx+a<7⇒a>1−sinx and ⇒a<7−sinx
We know that sinx∈[−1,1], so
1−sinx∈[0,2]7−sinx∈[6,8]
Now,
a>1−sinx
Largest possible value of 1−sinx is 2,
a>2
a<7−sinx
Smallest possible value of 7−sinx is 6,
a<6
Hence, the required range is
a∈(2,6)