wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=sin3x+sin3(x+2π3)+sin3(x+4π3) then the primitive of f(x) w.r.t x is where C is an arbitrary constant

A
3sin3x4+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3cos3x4+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin3x4+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos3x4+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is A cos3x4+C
Let
I=(sin3(x)+sin3(x+(2π3))+sin3(x+(4π3)))dx=(sin3(x)cos3(π6x)+cos3(π6+x))dx=sin3(x)dx+cos3(π6+x)dxcos3(π6x)dx
U\sin g reduction formula
sinm(x)dx=cos(x)sinm1(x)m+m1msin2+m(x)dx
where m=3, we get
I=13sin2(x)cos(x)+23sin(x)dx+cos3(π6+x)dxcos3(π6x)dx=2cos(x)313sin2(x)cos(x)+cos3(π6+x)dxcos3(π6x)dx
For cos3(π6+x)dx
Substitute π6+x=t and dx=dt
And u\sin g reduction formula
cosm(x)dx=sin(x)cosm1(x)m+m1mcos2+m(x)dx
We get,
cos3(π6+x)dx=2sin(π6+x)3+13sin(π6+x)cos2(π6+x)
Similarly
cos3(π6x)dx=2sin(π6x)3+13sin(π6x)cos2(π6x)
Substituting these values in I and simplifying, we get
I=14cos(3x)+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ozone Layer
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon