The correct option is A cos3x4+C
Let
I=∫(sin3(x)+sin3(x+(2π3))+sin3(x+(4π3)))dx=∫(sin3(x)−cos3(π6−x)+cos3(π6+x))dx=∫sin3(x)dx+∫cos3(π6+x)dx−∫cos3(π6−x)dx
U\sin g reduction formula
∫sinm(x)dx=−cos(x)sinm−1(x)m+m−1m∫sin−2+m(x)dx
where m=3, we get
I=−13sin2(x)cos(x)+23∫sin(x)dx+∫cos3(π6+x)dx−∫cos3(π6−x)dx=−2cos(x)3−13sin2(x)cos(x)+∫cos3(π6+x)dx−∫cos3(π6−x)dx
For ∫cos3(π6+x)dx
Substitute π6+x=t and dx=dt
And u\sin g reduction formula
∫cosm(x)dx=sin(x)cosm−1(x)m+m−1m∫cos−2+m(x)dx
We get,
∫cos3(π6+x)dx=2sin(π6+x)3+13sin(π6+x)cos2(π6+x)
Similarly
∫cos3(π6−x)dx=2sin(π6−x)3+13sin(π6−x)cos2(π6−x)
Substituting these values in I and simplifying, we
get
I=14cos(3x)+C