wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=x2+xg(1)+g′′(2) and g(x)=f(1).x2+xf(x)+f′′(x) then

A
f(1)+f(2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
g(2)=g(1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
g′′(2)+f′′(3)=6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A f(1)+f(2)=0
B g(2)=g(1)
C g′′(2)+f′′(3)=6
Let g(1)=a and g(2)=b --------(1)
Then
f(x)=x2+ax+b,f(1)=1+a+bf(x)=2x+a,f′′(x)=2g(x)=(1+a+b)x2+(2x+a)x+2=x2(3+a+b)+ax+2g(x)=2x(3+a+b)+a

Hence
g(1)=2(3+a+b)+a --------(2)

g(2)=4(3+a+b)+a --------(3)

From (1),(2) and (3)
a=2(3+a+b)+a and b=2(3+a+b)

3+a+b=0 and b+2a+6=0

f(x)=x23x and g(x)=3x+2

f(1)+f(2)=0g′′(2)+f′′(3)=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon