Let f(x)=x2+xg′(1)+g′′(2) and g(x)=f(1).x2+xf′(x)+f′′(x) then
A
f′(1)+f′(2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
g′(2)=g′(1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
g′′(2)+f′′(3)=6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Af′(1)+f′(2)=0 Bg′(2)=g′(1) Cg′′(2)+f′′(3)=6 Let g′(1)=a and g′(2)=b --------(1) Then f(x)=x2+ax+b,f(1)=1+a+bf′(x)=2x+a,f′′(x)=2∴g(x)=(1+a+b)x2+(2x+a)x+2=x2(3+a+b)+ax+2⇒g′(x)=2x(3+a+b)+a