The correct option is B f is differentiable for all x, except at x=nπ,n=±1,±2,±3,….
Given:
f(x)=x|sinx|
∴f(x)={xsinxx∈[2nπ,(2n+1)π], n∈Z−xsinxx∈((2n+1)π,(2n+2)π), n∈Z
f′(x)={sinx+xcosxx∈[2nπ,(2n+1)π]−sinx−xcosxx∈((2n+1)π,(2n+2)π)
For the function to be differentiable at x=nπ,
sinnπ+nπcosnπ=−sinnπ−nπcosnπ⇒cosnπ=−cosnπ⇒n=0
Hence, f is differentiable for all x, except at x=nπ,n=±1,±2,±3,⋯