Let f(x)=x2+1x2 and g(x)=x-1x,x∈R--1,0,1. If h(x)=f(x)g(x), then the local minimum value of h(x) is:
-22
22
3
-3
Explanation for the correct option:
Given that: f(x)=x2+1x2 , g(x)=x-1x,x∈R--1,0,1, h(x)=f(x)g(x)
Calculating h(x):
h(x)=f(x)g(x)=x2+1x2x-1x=x-1x2+2x-1x=x-1x+2x-1x
Let, x-1x=t⇒t+2t=h(x)
Differentiating to calculate the maxima or minima:
h'(x)=1-2t2Puttingh'(x)=01-2t2=0⇒t=±2
Now,
h''(x)=4t3Att=2,h''(x)=22Att=-2,h''(x)=-22
Therefore, h(x) is minimum at t=2
So,
h(x)=1+2t=2+22=22
Hence, the correct option is ( B).
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2