Let ^i,^j,^k be the orthonormal system of vectors, and →a be any vector. If →a×^i+2→a−5^j=¯0 , then →a is
A
2^j+^k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2^i−^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2^i−^j
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2^i+^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2^j+^k Let →a=λ^i+μ^j+γ^k →a×^i=−μ^k+γ^j ∴ We have →a×^i+2(λ^i+μ^j+γ^k)−5^j=0 ⇒−μ^k+γ^j+2λ^i+2μ^j+2γ^k−5^j=0 2μ+γ=5⋯(1) μ=2γ⋯(2) λ=0⋯(3)
From (1) and (2) γ=1,μ=2
Thus →a=2^j+^k