The correct option is C 1003
In I2, put x+1=t,dx=dt, then
I2=2∫−22t2+11t+14t4+2dt=2∫−22x2+11x+14x4+2dx
∴I1+I2=2∫−2x6+3x5+7x4+2x2+11x+14x4+2dx
=2∫−2(x2+3x+7)(x4+2)+5xx4+2dx
=2∫−2(x2+3x+7)dx+52∫−2xx4+2dx
=22∫0(x2+7)dx+0+0=2[x33+7x]20=1003
∵a∫−af(x) dx=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩0,if f(x) is odd2a∫0f(x)dx, if f(x) is even