LetIn=∫tannxdx(n>1). If I4+I6=atan5x+bx5+C, where C is a constant of integration, then the ordered pair (a,b) is equal to
(1/5,0)
(1/5,-1)
(-1/5,0)
(-1/5,1)
Determine the ordered pair (a,b)
Given, In=∫tannxdx(n>1).
∴In+In+2=∫tannxdx+∫tanxn+2dx=∫tannx(1+tanx2)dx=∫tannxsec2xdx=tann+1xn+1+C
Put n=4we get,
In+In+2=tann+1xn+1+C⇒I4+I6=tan5x5+C⇒I4+I6=15tan5x+0×x5+C
Therefore, comparing with the result we can see that a=15,b=0. Ordered pair is 15,0
Hence, option A is the correct answer.
Name the property where a,bandc
a+b=b+a: