wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let K=1 , then prove that 88n=01cosnK.cos(n+1)K=cosKsin2K

Open in App
Solution

88n=01cosk.cos(n+1)k
[1cosk.cosk+1cosk.cos2k+....+1cos88k.cos89k]
Now 1cosnk.cos(n+1)k=1sink[sinkcosnk.cos(n+1)k]
=1sink[sin[(n+1)knk]cosnkcos(n+1)k]
=1sink[sin(n+1)kcosnkcos(n+1)ksinnkcosnkcos(n+1)k]
=1sinx[tan(n+1)ktannk]
1cosokcosk=(tanktanok)×1sink
=1coskcos2k=(tan2ktank)×1sink

1cos88kcos89k=(tan89ktan88k)×1sink

88n=01coskcos(n+1)k=tan89k×1sink
cosk=1o
sum =tan89o×1sin1o
=cot1o×1sin1o
=cos1o(sin1o)2
=cosk(sink)2=RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon