Given ellipse : x216+y215=1
Here,
a2=16,b2=15⇒e2=1−b2a2⇒e=√1−1516=14
Endpoints of the latus rectum
=(±ae,±b2a)=(±1,±154)
Now,
L1≡(1,154),L′1≡(1,−154),L2≡(−1,154),L′2≡(−1,−154)
For S1=0 center C1=(1,0) and r1=154
For S2=0 center C2=(−1,0) and r2=154
Now,
C1C2=2r1+r2=152|r1−r2|=0
As |r1−r2|<C1C2<r1+r2
So, the circles intersect each other, therefore the number of common tangents is 2.