Let l1,l2,l3 be the lengths of the internal bisectors of angles A,B,C respectively of a ΔABC. Statement-1;cosA2l1+cosB2l2+cosC2l3=2(1a+1b+1c) Statement-2:l21=bc[1−(ab+c)2];l22=ca[1−(bc+a)2];l23=ab[1−(ca+b)2]
Match the equations A, B, C, D with the lines L1, L2, L3, L4, L5 whose graphs are roughly drawn in the adjoining figure.
A: y = 2
B: y – 2 + 2 = 0
C: 3 + 2y = 6
D: y = -2
E : = 2
a2 + b2 + c2 - ab - bc - ca equals:
Show that the straight lines L1=(b+c)x+ay+1=0, L2=(c+a) x+by+1=0 and L3=(a+b)x+cy+1=0 are concurrent.