Let L1=limx→0cos(πx)(eλx−1)πsinx and L2=limx→0ln(1−x)+sin2xx. If L1=L2, then the value of [λ] is (Note: [λ] denotes the largest integer less than or equal to λ.)
Open in App
Solution
L1=limx→0cos(πx)(eλx−1)πsinx⇒L1=limx→0cos(πx)(eλx−1)λπ(λx)sinxx⇒L1=λπ⋯(1)L2=limx→0ln(1−x)+sin2xx⇒L2=limx→0ln(1−x)x+limx→02sin2x2x⇒L2=−1+2=1⋯(2) We know that, L1=L2 Using equation (1) and (2), ⇒λπ=1⇒λ=π⇒[λ]=3