L=limh→0h2f(x+2h)−2f(x+h)+f(x)
Using L-Hospital’s rule, we get
L=limh→02h2f′(x+2h)−2f′(x+h)
Again, using L-Hospital’s rule, we get
L=limh→024f′′(x+2h)−2f′′(x+h)
⇒1f′′(x)=x1−x1+x(1+lnx)2
⇒f′′(x)=x(1+lnx)2+1x1−x
⇒f′′(x)=xx−1(x(1+lnx)2+1)
⇒f′′(x)=xx(1+lnx)2+xx−1
⇒∫f′′(x)dx=∫xx(1+lnx)II⋅(1+lnx)Idx+∫xx−1dx
⇒f′(x)=xx(1+lnx)+C1
⇒∫f′(x)dx=∫xx(1+lnx)dx+∫C1dx
⇒f(x)=xx+C1x+C2
Given, limx→0+f(x)=1
⇒limx→0+(xx+C1x+C2)=1
⇒1+0+C2=1⇒C2=0
∴f(x)=xx+C1x
Also, f(1)=2
⇒f(1)=1+C1=2⇒C1=1
∴f(x)=xx+x
Hence, f(3)f(2)=306=5