wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let limh0h2f(x+2h)2f(x+h)+f(x)=x1x1+x(1+lnx)2. If limx0+f(x)=1 and f(1)=2, then the value of f(3)f(2) is

Open in App
Solution

L=limh0h2f(x+2h)2f(x+h)+f(x)
Using L-Hospital’s rule, we get
L=limh02h2f(x+2h)2f(x+h)
Again, using L-Hospital’s rule, we get
L=limh024f′′(x+2h)2f′′(x+h)
1f′′(x)=x1x1+x(1+lnx)2
f′′(x)=x(1+lnx)2+1x1x
f′′(x)=xx1(x(1+lnx)2+1)
f′′(x)=xx(1+lnx)2+xx1
f′′(x)dx=xx(1+lnx)II(1+lnx)Idx+xx1dx
f(x)=xx(1+lnx)+C1
f(x)dx=xx(1+lnx)dx+C1dx
f(x)=xx+C1x+C2

Given, limx0+f(x)=1
limx0+(xx+C1x+C2)=1
1+0+C2=1C2=0
f(x)=xx+C1x
Also, f(1)=2
f(1)=1+C1=2C1=1
f(x)=xx+x
Hence, f(3)f(2)=306=5

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Right Hand Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon