The correct options are
B The number of zeros at the end of N is only one.
C N=3101×k, where k is an integer
N=100∑r=0(−1)r.4100−r⋅200Cr⋅200−rC100−r
=100∑r=0(−1)r.4100−r×200!r!(200−r)!×(200−r)!(100−r)!100!×100!100!
N= 200C100 .(4−1)100
N= 200C100 .3100
no. of zero's in 200C100 is equal to exponent of 5.
200!100!100!=(40+8+1)(2×(20+4+0)) = exp. of 5 → 49−48=1
Let's find the exponent of 3 in 200C100
200C100=200!100!×100!exponent of 3 in200C100=exponent of 3 in 200!exponent of 3 in 100!×100!=97−96=1⇒ 200C100 3100=k×3101
the number of ways of distributing 200 different objects among 2 persons equally =200!100! 100!×12!×2!= 200C100
the coefficient of x100 in (1−x)200= 200C100