Let n(A−B)=25+x, n(B−A)=2x and n(A∩B)=2x. If n(A)=2(n(B)), then x = ___.
5
Given that n(A−B)=25+x, n(B−A)=2x and n(A∩B)=2x.
We know that n(A)=n(A−B)+n(A∩B). =25+x+2x=3x+25
Similarly, n(B)=n(B−A)+n(A∩B)
=2x+2x = 4x.
n(A)=2(n(B))⇒3x+25 = 2×4x
⇒5x=25⇒x=5