The correct option is
D orthocentre
Given, →OP.→OQ+→OR.→OS=→OR.→OP+→OQ.→OS=→OQ.→OR+→OP.→OS
Consider, →OP.→OQ+→OR.→OS=→OR.→OP+→OQ.→OS
→OP.→OQ−→OR.→OP=→OQ.→OS−→OR.→OS
→OP(→OQ−→OR)=→OS(→OQ−→OR)
→OP(→OQ−→OR)−→OS(→OQ−→OR)=0
(→OQ−→OR).(→OP−→OS)=0
→QR.→PS=0
We know that
If dot product of 2 vectors is equal to 0, then the 2 vectors are perpendicular.
∴→QR is perpendicular to →PS ---------(i)
Consider,
→OP.→OQ+→OR.→OS=→OQ.→OR+→OP.→OS
Following the same steps as above, we get that
→QS.→PR=0
∴→QS is perpendicular to →PR ---------(ii)
Consider,
→OP.→OQ+→OR.→OS=→OQ.→OR+→OP.→OS
Following the same steps as above, we get that
→RS.→PQ=0
∴→RS is perpendicular to →PQ ---------(iii)
∴S is the intersection of perpendiculars.
Hence it's the orthocentre of PQR
Option D.