The correct option is B cos−1(−13)
→a=^i+^j−^k
⇒|→a|=√12+12+(−1)2=√3
and →b=^i−^j+^k
⇒|→b|=√12+(−1)2+12=√3
Now, →a⋅→b=(^i+^j−^k)⋅(^i−^j+^k)
⇒→a⋅→b=1−1−1=−1
Let θ be the angle between the vectors →a and →b.
Then, cosθ=→a⋅→b|→a||→b|
⇒cosθ=−1√3√3
⇒θ=cos−1(−13)