Let →a=^j−^k,→c=^i−^j−^k then →b satisfying →a×→b+→c=0 and →a.→b=3 is
A
−^i+^j−2^k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
^i+^j−2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2^i−^j+2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
^i−^j−2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−^i+^j−2^k Given: →c=−→a×→b →c=→b×→a
Taking dot product of →b both sides →b.→c=→b.(→b×→a)=[→b→b→a]=0
Hence, →b.→c=0⋯(i)
Let →b=b1^i+b2^j+b3^k
putting values in equation (i) ⇒(b1^i+b2^j+b3^k).(^i−^j−^k)=0 ⇒b1−b2−b3=0⋯(ii)
And given →a.→b=3 ⇒(^j−^k).(b1^i+b2^j+b3^k)=3 ⇒b2−b3=3⋯(iii)
From (ii) and (iii) b1=b2+b3=(3+b3)+b3 b1=3+2b3
Hence, →b=(3+2b3)^i+(3+b3)^j+b3^k
Now putting all values in →a×→b+→c=0 (^j−^k)×((3+2b3)^i+(3+b3)^j+b3^k)+(^i−^j−^k)=0 (2b3+3)^i+(−3−2b3)^j+(−3−2b3)^k=(−1)^i+(1)^j+(1)^k
On comparing 2b3+3=−1 2b3=−4 b3=−2
Hence b1=3+2(−2)=−1
Hence b2=3+(−2)=1
Therefore →b=−^i+^j−2^k