wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a=^j^k, c=^i^j^k then b satisfying a×b+c=0 and a.b=3 is

A
^i+^j2^k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
^i+^j2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2^i^j+2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
^i^j2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A ^i+^j2^k
Given: c=a×b
c=b×a
Taking dot product of b both sides
b.c=b.(b×a)=[b b a]=0
Hence, b.c=0(i)
Let b=b1^i+b2^j+b3^k
putting values in equation (i)
(b1^i+b2^j+b3^k).(^i^j^k)=0
b1b2b3=0(ii)
And given a.b=3
(^j^k).(b1^i+b2^j+b3^k)=3
b2b3=3(iii)
From (ii) and (iii)
b1=b2+b3=(3+b3)+b3
b1=3+2b3
Hence, b=(3+2b3)^i+(3+b3)^j+b3^k
Now putting all values in a×b+c=0
(^j^k)×((3+2b3)^i+(3+b3)^j+b3^k)+(^i^j^k)=0
(2b3+3)^i+(32b3)^j+(32b3)^k=(1)^i+(1)^j+(1)^k
On comparing 2b3+3=1
2b3=4
b3=2
Hence b1=3+2(2)=1
Hence b2=3+(2)=1
Therefore b=^i+^j2^k

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon