The correct option is
B 12(→p+→q+→r)We have
→p×{→x−→q×→p}+→q×{→x−→r×→q}+→r×{→x−→p×→r}=→0
⇒(→p.→p)(→x−→p)−{→p(→x−→q)}→p+(→q.→q)(→x−→r)
−{→q.(→x−→r)}→q+(→r.→r)(→x−→p)−{→r.(→x−→p)}→r=0
⇒(∣∣→p∣∣2=∣∣→q∣∣2+∣∣→r∣∣2)→x−(∣∣→p∣∣2→q+∣∣→q∣∣2→r+∣∣→r∣∣2→p)
−[(→p.→x)→p+(→q.→x)→q+(→r.→x)→r]=0
⇒3λ2→x−λ2(→p+→q+→r)−{(→p.→x)→p+(→r.→x)→q+(→r.→x)→r}=0 ...(1)
where λ=∣∣→p∣∣=∣∣→q∣∣=∣∣→r∣∣
Taking dot product with →p, we get
3λ2(→x.→p)−λ2∣∣→p∣∣2=0[∵→p.→q=→p.→r=0]
⇒3λ2(→x.→p)−λ4−λ2(→p.→x)=0
⇒→p.→x=λ22
Similarly , →q.→x=λ22 and →r.→x=λ22.
Substituting these vales in (1), we get
3λ2→x.λ2(→p+→q+→r)−λ22(→p+→q+→r)=→0
⇒→x=12(→p+→q+→r)