Given,
(tanp−1)3+2019(tanp−1)=−1 …(1)
(1−cotq)3+2019(1−cotq)=−1 …(2)
Substract equation (2) from (1)
[(tanp−1)3−(1−cotq)3]+2019 (tanp−1)−2019 (1−cotq)=0
Apply [a3−b3=(a−b)(a2+b2+ab)]
⇒((tanp−1)−(1−cotq))[(tanp−1)2+(tanp−1)(1−cotq)+(1−cotq)2]+2019 (tanp+cotq−2)=0
⇒[tanp+cotq−2][(tanp−1)2+(1−cotq)2+(tanp−1)(1−cotq)+2019]=0
This is possible if tanp+cotq=2
∴ sinr+cosr=1
⇒r=−2π,−3π2,0,π2,2π
No. of possible values =5
Alternate Method
Let tanp−1=t, 1−cot=k. we get
f(t)=t3+2019t+1 and
g(k)=k3+2019k+1
f′(t)=3t2+2019>0, It means f(t)=0 has only one solution.
Similarly g(k)=0 has only one solution.
That is possible only when t=k
tanp−1=1−cotq⇒tanp+cotq=2
Now, we have sinr+cosr=1
⇒cos(r−π4)=cosπ4
⇒r−π4=2nπ±π4, n∈I
⇒r=2nπ or r=2nπ+π2
∵r∈[−2π,2π]
∴r=−2π,0,2π or r=π2,−3π2
Hence, 5 values are there.