Let P(x) be a polynomial of degree 2010. Suppose P(n)=n1+n for all n=0,1,2,…,2010. Find P(2012). (correct answer + 5, wrong answer 0)
Open in App
Solution
Define Q(x)=(1+x)P(x)−x Then Q(x) is a polynomial of degree 2011. Since Q(0)=Q(1)=Q(2)=⋯=Q(2010)=0, ∴Q(x) can be written as Q(x)=Ax(x−1)(x−2)⋯(x−2010) 1=Q(−1)=A(−1)(−2)(−3)⋯(−2011)=−A×(2011)! ⇒A=−1(2011)!
Now, Q(2012)=A×(2012)! =−1(2011)!×(2012)! =−2012 And P(2012)=Q(2012)+20122013 =−2012+20122013=0