Let P(x) be a polynomial of degree 4, with P(2)=−1, P′(2)=0, P′′(2)=2, P′′′(2)=−12 and Piv(2)=24, The value of P′′(1) is
Open in App
Solution
Let us take P(x)=a(x−2)4+b(x−2)3+c(x−2)2+d(x−2)+e Thus P(2)=e=−1 ⇒P′(2)=d=0 ⇒P′′(2)=2c=2⇒c=1 ⇒P′′′(2)=6b=−12⇒b=−2 and Piv(2)=24a=24⇒a=1 ⇒P′′(x)=12(x−2)2−12(x−2)+2 ∴P′′(1)=12−12(−1)+2=26