The correct option is C 12π
z6+z3+1=0
letz3=t
t2+t+1=0
⇒t=−1±√1−42
=−1±√3i2
=ei2π3,ei4π3
weknow
z=reiθ
⇒z3=r3e3iθ
comparing
e3iθ=ei2π3,e3iθ=ei4π3
3θ=2nπ+2π3,3θ=2nπ+4π3
forn=0
3θ=2π3,3θ=4π3
⇒θ=2π9=40,θ=2π9=80
forn=1
3θ=8π3,3θ=10π3
⇒θ=8π9=160,θ=10π9=200
forn=2
3θ=14π3,3θ=16π3
⇒θ=14π9=280,θ=16π9=320
forn=3
3θ=20π3,3θ=22π3
⇒θ=20π9=400,θ=22π9=440
forn=4
3θ=26π3,3θ=28π3
⇒θ=26π9=520,θ=28π9=560
forn=5
3θ=32π3,3θ=34π3
⇒θ=32π9=640,θ=34π9=680
θ∈(π,3π)
=θ∈(180,540)
Hence
sum=280+400+510+200+320+440
=2160×π180
=12π