Let S(K)=1+3+5+.....+(2K−1)=3+K2. Then which of the following is true?
S(K)⇒S(K+1)
S(K)=1+3+5+...+(2K−1)=3+K2
Putting K=1 in both sides, we get
L.H.S≠R.H.S
Putting (K+1) on both sides in place of K, w get
L.H.S.=1+3+5+...+(2K−1)+(2K+1)
R.H.S=3+(K+1)2=3+K2+2K+1
Let L.H.S.=R.H.S. Then,
1+3+5+...+(2K−1)+(2K+1)=3+K2+2K+1⇒1+3+5+...+(2K−1)=3+K2
If S(K) is true, then S(K+1) is also true.
Hence, S(K)⇒S(K+1)