The correct option is C 1
Let the three digits number be ABC, where A=a, B=ar, C=ar2 and the number be x, so
x=100a+10ar+10ar2
Now,
y=x−400⇒y=100(a−4)+10ar+ar2⋯(1)
Clearly,
1≤a≤9 and 1≤a−4≤9⇒a∈[5,9]⋯(2)
Now, the digits of y are in A.P., so
2ar=a−4+ar2⇒ar2−2ar+(a−4)=0⇒r=2a±√4a2−4a(a−4)2a⇒r=a±2√aa⋯(3)
As a,ar,ar2 are integers, so r should be a rational number, therefore a should be a perfect square,
a=9
Using equation (3), we get
r=9±69=53,13
When r=53, we get
ar=15, which is not possible as ar∈[1,9]
When r=13, we get
a=9,ar=3,ar2=1
Hence, the number is 931.