Let U = {1,2,3,4,5,6,7,8,9}, A = {1,2,3,4}, B = {2,4,6,8} and C = {3,4,5,6}. Find :
(i) A′ (ii) B′ (iii) (A∩C)′
(iv) (A∪B)′ (v) (A′)′ (vi) (B−C)′
(i) U= {1,2,3,4,5,6,7,8,9}, A = {1,2,3,4}, B = {2,4,6,8}, C = {3,4,5,6}
By the complement of a set A, which respect to the universal set U, denoted by A′ or AC or U- A, we mean {x ϵ U:x/ϵA }.
Hence, A′ = { x ϵ U:x/ϵA } = {5,6,7,8,9}
(ii) B′ = { x ϵ U:x/ϵB } = {1,3,5,7,9}
(iii) (A∩C)′ = { x ϵ U:x/ϵA∩C}
Now,
A∩C = {x:x ϵ A and x ϵC} = {3,4}
∴ (A∩C)′ = {1,2,5,6,7,8,9}
(iv) (A∪B)′
(A∪B)′ = {x:U ϵ A∩B }
Now, A∩B = {x:x ϵ A and x ϵ B}
= {1,2,3,4,5,6,8}
(A∪B)′ = {5,7,9}
(v) (A′)′
(A′)′ = {x ϵ U:x ϵ A′ }
= {x ϵU:x ϵ A} [∵x/ϵA′ means x epsilon A ]
= A [∴A⊂U]
(vi) (B−C)′
B−C′ = [ x ϵB:x/ϵC ] = {2,8}
Hence, B−C′ = {x ϵ U:x/ϵB−C }
= {x ϵ U:x/ϵ 2,8}
= {1,3,4,5,6,7,9}