Let (x0,y0) be the solution of the following equations (2x)ln2=(3y)ln3 , 3lnx=2lny then x0 is
A
16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C12 We have, (2x)ln2=(3y)ln3⇒ln2.ln2x=ln3.ln3y⇒ln2.ln2x=ln3.(ln3+lny)....(1) Also given 3lnx=2lny ⇒lnx.ln3=lny.ln2⇒lny=lnx.ln3ln2 Substituting this value of lny in equation (1), we get ln2.ln2x=ln3[ln3+lnx.ln3ln2]⇒(ln2)2ln2x=(ln3)2ln2+(ln3)2lnx⇒(ln2)2ln2x=(ln3)2(ln2+lnx)⇒(ln2)2ln2x−(ln3)2ln2x=0⇒[(ln2)2−(ln3)2]ln2x=0⇒ln2x=0⇒2x=1orx=12