Let x1,x2,x3,x4 and x5 be roots of p(x)=x5+x2+1 and g(x)=x2−2. The value of g(x1)g(x2)g(x3)g(x4)g(x5)−30g(x1x2x3x4x5) is___
Open in App
Solution
x1x2x3x4x5=−1⇒g(x1x2x4x5)=1−2=−1 Let y=g(x)⇒x=√y+2 Substitute in p(x)⇒(y+2)52=−(y+3) ⇒y5+104+40y3+79y2+74y+23=0 Roots are:g(xi),p=1 to 5 ∴g(x1)g(x2)g(x3)g(x4)g(x5)=−23∴−23−30(−1)=7