Let x and a stand for distance. Is ∫dx√a2−x2=1asin−1ax dimensionally correct ?
Dimension of the left side
∫dx√(a2−x2)=∫L√(L2−L2)=[L∘]
Dimension of the right side
(1a)sin−1(ax)=(L−1)
So, dimension of
∫dx√(a2−x2)≠(1a)sin−1(ax)
Thus the equation is dimensionally incorrect.