Let xtanα+ysinα=α,αxcosecα+ycosα=1 be two straight lines. Let P be the point of intersection of the lines in the limiting position when \alpha \rightarrow 0, if the point P is (h, k), then |h + k| is
P(αcosα−sinαsinα−α,sin2α−α2cosα(sinα−α)sinαcosα)
As limit α→0+
P≡(2,−1)
∴h+k=1