Let x+y=k where x,y>0 and S(k,n)=∑nr=0r2(nCr)xryn−r then
A
S(1,5)=5xy+25x2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
S(2,3)=2(3xy+9x2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
S(4,4)=64(xy+4x2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are AS(1,5)=5xy+25x2 BS(2,3)=2(3xy+9x2) CS(4,4)=64(xy+4x2) Let x=y=1.
We have r2(nCr)=(r(r−1)+r)(nCr)=n(n−1)(n−2Cr−2)+n(n−1Cr−1) Thus, S(1,n)=n(n−1)∑nr=2n−2Cr−2xryn−r+n∑nr=1n−1Cr−1xryn−r=n(n−1)x2+nx =nx(nx+y) When x+y=k we write S(k,n)=kn∑nr=0r2nCr(xk)r(yk)r−1=nkn(xk)[n(xk)+yk] =kn−2nx(nx+y)