Let y be an implicit function of x defined by x2x−2xx cot y−1=0. Then y′(1) equals
- 1
x2x−2xx cot y−1=0
⇒2 cot y=xx−x−x⇒2 cot y=u−1u where u=xx
Differentiating both sides with respect to x, we get
⇒−2cosec2y dydx=(1+1u2)dudx
where u=xx⇒log u=x log x
⇒1ududx=1+log x ⇒dudx=xx(1+log x)
∴ We get −2 cosec2y dydx=(1+x−2x).xx(1+log x)
⇒dydx=(xx+x−x)(1+log x)−2(1+cot2y)⋯(i)
Now when x=1,x2x−2xx cot y−1=0,gives 1−2 cot y−1=0⇒coty=0
∴ From equation (i), at x=1 and coty=0, we get y′(1)=(1+1)(1+0)−2(1+0)=−1