wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=y(x) be the solution of the differential equation cosx(3sinx+cosx+3)dy=(1+ysinx(3sinx+cosx+3))dx, 0xπ2, y(0)=0. Then, y(π3) is equal to:

A
2loge(23+1011)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2loge(3+72)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2loge(3384)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2loge(23+96)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 2loge(23+1011)
cosx(3sinx+cosx+3)dy=(1+ysinx(3sinx+cosx+3))dx (1)
(3sinx+cosx+3)(cosx dyysinx dx)=dx
d(ycosx)=dx3sinx+cosx+3
ycosx=dx3(2tanx21+tan2x2)+(1tan2x21+tan2x2)+3
ycosx=sec2x2dx6tanx2+1tan2x2+3+3tan2x2
ycosx=sec2x2dx2tan2x2+6tanx2+4
=12sec2x2dxtan2x2+3tanx2+2
ycosx=lntanx2+1tanx2+2+C
y(0)=0
C=ln(12)=ln(2)
Now, y(π3)=2ln1+31+23+ln2
=2ln5+311+ln2
=2ln23+1011

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon