wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let z=(cosx)5 and y=sinx. Then the value of 2d2zdy2 at x=2π9 is

Open in App
Solution

z=(cosx)5dzdx=5(cosx)4sinx
y=sinxdydx=cosx
So,
dzdy=5cos3xsinxd2zdy2=ddx(dzdy)dxdyd2zdy2=ddx[5cos3xsinx]1cosxd2zdy2=5cosx[cos4x3cos2xsin2x]d2zdy2=5[cos3x3cosx(1cos2x)]d2zdy2=5[4cos3x3cosx]d2zdy2=5cos3x
Putting x=2π9
d2zdy2=5cos3×2π9=52

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating One Function wrt Other
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon