z=(cosx)5⇒dzdx=−5(cosx)4sinx
y=sinx⇒dydx=cosx
So,
dzdy=−5cos3xsinx⇒d2zdy2=ddx(dzdy)⋅dxdy⇒d2zdy2=ddx[−5cos3xsinx]⋅1cosx⇒d2zdy2=−5cosx[cos4x−3cos2xsin2x]⇒d2zdy2=−5[cos3x−3cosx(1−cos2x)]⇒d2zdy2=−5[4cos3x−3cosx]⇒d2zdy2=−5cos3x
Putting x=2π9
d2zdy2=−5cos3×2π9=52